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Atom–atom potentials from ab initio calculations
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Recent developments in ab initio intermolecular perturbation theory, using density
functional theory, have made it possible to calculate intermolecular interactions between
organic molecules of 30 or more atoms routinely and accurately. Related methods can
provide accurate distributed properties of such molecules (multipoles and polarizabilities).
These developments open up new possibilities for accurate ab initio atom–atom potentials, at
a time when applications have raised new challenges, in that aspects of the interaction
energy that were once ignored must now be accounted for. This review seeks to show
how modern ab initio methods in intermolecular perturbation theory, and new methods
for distributing molecular response properties, can be used to develop a new generation of
atom–atom potentials.
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1. Introduction

For many purposes it is necessary to describe the interactions between molecules in
a compact form that can be evaluated efficiently. Examples of such applications are
simulations of molecules in the liquid or the solid, in solution or adsorbed on surfaces.
In many such applications the molecules do not react, but retain their integrity and
can often be treated as rigid or semi-rigid. Flexible molecules such as proteins raise
additional issues, but there too there are interactions between different parts of the
molecule that may come into close proximity to each other, and these interactions
are similar to those between different molecules.

It is customary to describe these interactions in atom–atom form: that is, as a sum of
terms, each describing the energy of interaction between a particular pair of atoms.
In the past, such atom–atom terms have been derived by fitting a postulated functional
form to experimental data, and there are a number of ‘force fields’, derived in this way,
that are routinely used in simulations. However, it is becoming possible to derive
accurate intermolecular potentials by ab initio calculation, and this offers a number
of advantages. The main problem with empirical force fields is that the
experimental data from which they are derived are determined by the interactions as
a whole, and the individual terms that contribute to the interaction – dispersion,
repulsion, electrostatic, induction – are not naturally separated. The force fields
generally contain terms that correspond formally to these separate contributions, but
the best fit to the data may not assign the contributions correctly. Any attempt to
understand or interpret particular terms is then likely to be misleading.

Ab initio calculation, on the other hand, in the form of symmetry adapted
perturbation theory (SAPT), leads to numerical values for each of the contributions,
and these can then be described by analytical formulae in an appropriate way. The
calculated values generally relate to the molecule as a whole, however, so it is still
necessary to derive an atom–atom description in some way. We outline here the ways
in which this can be done for each of the main terms in the interaction.
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2. Defining an atom–atom potential

The starting point for our understanding of intermolecular forces is the many-body
expansion, which is a partitioning of the N-body interaction energy. The leading
terms describe two-body interactions, in which each pair of molecules in turn is treated
as if no other molecules were present. The next terms describe three-body corrections –
the correction that must be added to the sum of two-body terms to describe each set of
three molecules correctly. This sequence continues through four-body and five-body
corrections, and so on.

Formally, we define the interaction energy of a cluster of N interacting molecules as

VABC . . . ð�ABC . . .Þ ¼ EABC . . . ð�ABC . . . , x�A,x
�
B, x

�
C, . . .Þ

� EAðx
0
AÞ � EBðx

0
BÞ � ECðx

0
CÞ � � � � : ð1Þ

Here EABC... is the energy of the cluster, EX, X ¼ A, B, C, etc., is the energy of mole-
cule X; �ABC... describes the cluster geometry; x0X is the geometry of monomer X in iso-
lation; and x�X is the geometry that monomer X assumes in the cluster. We define
�EX ¼ EXðx

�
XÞ � EXðx

0
XÞ, the change in internal energy of monomer X in going

from geometry x0X to geometry x�X, which will generally be positive. Then (1) can be
re-written as

VABC . . . ð�ABC . . .Þ ¼ EABC . . . ð�ABC . . . , x�A,x
�
B, x

�
C, . . .Þ � EAðx

�
AÞ � EBðx

�
BÞ � � � �

þ ðEAðx
�
AÞ � EAðx

0
AÞÞ þ ðEBðx

�
BÞ � EBðx

0
BÞÞ þ � � �

¼ V�
ABC...ð�ABC...Þ þ �EA þ �EB þ � � � , ð2Þ

where V�
ABC..., implicitly defined above, can be regarded as the energy of the cluster

relative to separated molecules held rigid in their cluster geometries.
We now expand V�

ABC... in the many-body expansion:

V�
ABC... ¼

X
X<Y

V�
XY þ

X
X<Y<Z

�V�
XYZ þ � � � , ð3Þ

where �V�
XYZ is the three-body correction, defined as

�V�
XYZ ¼ V�

XYZ � V�
XY � V�

XZ � V�
YZ: ð4Þ

In the same way, we can define four-body corrections, five-body corrections, and so on.
The many-body expansion of the interaction energy is exact, but for it to be of

practical use, the many-body corrections must be either small or easily obtained
through a suitable approximation. The two-body interactions are well understood
and can be evaluated for moderate-sized molecules, but accurate calculations of the
many-body corrections are computationally very demanding and can be achieved
for small clusters of small molecules only. Fortunately these corrections are usually
relatively small, with the important exception of the three-body induction energy,
which is often large but can be calculated to good accuracy if a good description of
the molecular polarizability is available.
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For practical reasons, therefore, we are led to concentrate on the pair interactions
and the induction energy, both because they are the most important terms and because
the other many-body terms are hard to calculate and are not well understood. We need
an analytical representation of these terms for use in, say, simulations and geometry
optimizations, applications that typically require the rapid evaluation of the interaction
energy and perhaps its first and second derivatives. Current wisdom suggests that this
surface is best constructed from a long-range, or asymptotic, part that is determined by
the asymptotic forms of the interaction energy components and molecular properties,
coupled with a short-range part that accounts for the exchange effects and other
parts of the interaction energy not accounted for by the asymptotic expansion.

Perturbation theory provides an ideal framework for this paradigm, as it provides the
interaction energy as a sum of physically understandable components, each of which
has a well-defined analytical asymptotic form that depends only on the unperturbed
properties of the interacting molecules. In fact, it is this separation and the resulting
power of interpretation that has made perturbation theory the basis of most of the
developments in the field of intermolecular interactions.

For the last ten years or so, the interaction energies were best calculated using the
SAPT method of Jeziorski, Szalewicz et al. [1–3] which is based on Hartree–Fock
theory. However this method uses a triple perturbation theory, the electron correlation
in each monomer being treated as a perturbation along with the intermolecular interac-
tion. Consequently the method, although accurate, is expensive in computer resources
and cannot be applied to molecules of more than about 10 atoms. More recently,
Szalewicz, Misquitta and Jeziorski [4, 5] have developed the SAPT(DFT) method, a
perturbation theory based on density functional theory (DFT) and linear-response
time-dependent density functional theory, while Hesselmann and Jansen [6–8]
independently developed a very similar theory that they call DFT-SAPT. These
methods retain the interpretative power and accuracy of SAPT while being much
more efficient computationally, and they are well suited for accurate calculations on
molecules of up to 20 or 30 atoms. SAPT(DFT) has been used to perform calculations
on the RDX dimer (21 atoms per molecule) [9] and to generate the complete potential
energy surface (PES) of the benzene dimer [10].

In brief, within the SAPT(DFT) formalism, the interaction energy components
up to second order in the intermolecular perturbation operator are computed as
follows. The first-order components, the electrostatic energy, E

ð1Þ
elst, and the first-order

exchange energy, E
ð1Þ
exch, are computed using what is known as SAPT(KS), that is, a

symmetry-adapted perturbation theory based on Kohn–Sham orbitals and eigenvalues
[4, 6, 11, 12]. The SAPT(KS) expressions for the interaction energy components are
identical to those from SAPT if the intramolecular correlation operators are neglected.
Formally, given the exact functional, the ground-state electron density would be exactly
recovered by Kohn–Sham density functional theory, so the electrostatic energy, which
depends on the unperturbed charge densities of the interacting monomers (see below),
should be recovered accurately within SAPT(KS). The first-order exchange energy
depends on the ground-state wavefunctions of the monomers, so we might not expect
this energy to be accurately recovered by SAPT(KS). However, E

ð1Þ
exch depends on the

wavefunctions through the interaction density matrix [13], and it has been shown
[4, 12] that the asymptotic form of this quantity – which is most relevant for
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intermolecular interactions – is the same for the Kohn–Sham wavefunctions as for the
exact, implying that the SAPT(KS) expression for E

ð1Þ
exch should be very accurate. This

has been borne out by numerous numerical tests on a variety of systems [4, 6, 12].
The second-order interaction energy components are response energies and cannot be

described accurately within SAPT(KS), which takes no account of orbital response
(relaxation) effects. Rather, these interaction energy components, which include the
second-order induction energy, E

ð2Þ
ind, and the second-order dispersion energy, E

ð2Þ
disp,

and their exchange counterparts (see section 6), are more correctly described using
Kohn–Sham linear response theory (also known as coupled Kohn–Sham (CKS)
theory), which describes the response of the orbitals to an external – possibly time-
dependent – perturbation to first order in the perturbation. Both E

ð2Þ
ind and E

ð2Þ
disp can

be expressed exactly in terms of the response functions from linear response theory,
and these can be calculated exactly, in principle, within CKS theory. The second-
order exchange energies have no simple expressions in terms of these response functions
and so are calculated using scaling rules which have been demonstrated to work rather
well [12, 14]. This formalism, that is, SAPT(KS) with CKS theory for the second-order
components, is collectively termed SAPT(DFT). As yet, terms higher than second order
in the interaction operator are not included in SAPT(DFT), but the third-order terms
can be calculated using SAPT(KS), that is, without response effects. The higher-order
terms can be important, and methods for approximating them will be discussed in
section 7.

Being based on density functional theory, the accuracy achieved by SAPT(DFT)
depends on the exchange-correlation functional used. Unlike supermolecular
approaches to calculating the interaction energy, which vary quite strongly with
functional, SAPT(DFT) interaction energies are quite robust and show only a weak
dependence [12, 14]. However, the best results for large molecules have been obtained
with the PBE0 hybrid functional [15] with the Tozer–Handy asymptotic correction
[16, 17]. It is essential to apply an asymptotic correction, that is, to ensure the correct
behaviour of the exchange–correlation potential at large distances, since that affects the
long-range electron density, which in turn strongly influences the interaction energy
components, particularly the first-order energies [4, 6]. Numerical details of the
SAPT(DFT) method are fully described in [9, 14, 18].

It is now well understood that the asymptotic expansion must be of distributed form,
that is, that we use a multi-centre rather than single-centre expansion. This is essential
for large molecules, for which a single-centre expansion may not even converge, or if it
does, the radius of divergence (the separation within which the expansion diverges)
may be so large as to make the expansion meaningless. This then requires that molecu-
lar properties like the multipole moments, and the static and frequency-dependent
polarizabilities on which the asymptotic expansions are based, be expressed in
terms of multiple centres. The distribution of multipole moments was achieved over
25 years ago with the distributed multipole method (DMA) of Stone [19, 20] which
has been recently refined [21] to accommodate the large basis sets used in modern
accurate calculations. However the distribution of polarizabilities has proved a
much harder problem, which has found a satisfactory solution [22–24] applicable to
small organic molecules (containing perhaps as many as 30 atoms) only in the last
few years.
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Before the development of the SAFT(DFT) method, it was difficult, if not
impossible, to compute accurate short-range interaction energies for all but the smallest
of organic molecules. Consequently it was necessary to use the asymptotic forms of the
interaction energy components, even at short-range, with the short-range exchange
effects handled, if at all, by damping functions. This was a pragmatic approach but
is undesirable and unnecessary today. The errors made by the asymptotic expansions
can now be more fully understood and accounted for in the next generation of
atom–atom potentials. There are indications of how this ought to be done and these
will be described in section 9.

In the next few sections, we will consider the main components of the interaction
energy in turn.

3. The electrostatic interaction

The electrostatic interaction arises from the straightforward classical interaction
between the total ground-state charge densities of the interacting molecules:

E
ð1Þ
elst ¼

Z
�Aðr1Þ�

Bðr2Þ

jr1 � r2j
d3r1 d

3r2: ð5Þ

(Here and throughout we use atomic units.) In SAPT(DFT), the total charge densities
that appear in this expression are evaluated using Kohn–Sham DFT.

Equation (5) can be broken down into atom–atom contributions in various ways.
Formally all we have to do is to assign the charge density to regions surrounding
each atom, to obtain

E
ð1Þ
elst ¼

X
a2A

X
b2B

Z
�aðr1Þ�

bðr2Þ

jr1 � r2j
d3r1 d

3r2 ð6Þ

where a denotes an atom of molecule A or the region associated with it, andP
a �

aðrÞ ¼ �AðrÞ.
To obtain the asymptotic form of E

ð1Þ
elst, it is then necessary to represent the charge

distribution �aðrÞ by a multipole expansion, using multipoles centred on the nucleus
of atom a, at position ra:

Qa
lm ¼

Z
Q̂lmðr� raÞ�

aðrÞ d3r: ð7Þ

The assignment of charge density to atoms has been done in a number of ways
[20, 25–29]. In Distributed Multipole Analysis (DMA) [19, 20], the electron density
�e is represented in terms of a Gaussian basis set:

�Ae ðrÞ ¼
X
ij

Dij’iðrÞ’jðrÞ ¼
X
pq

Cpq�pðr� rpÞ�qðr� rqÞ, ð8Þ
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where the ’i are contracted Gaussian basis functions and the �pðr� rpÞ is a primitive
Gaussian function centred at rp. The product �pðr� rpÞ�qðr� rqÞ is another Gaussian
centred at some point Ppq on the line between rp and rq, and its contribution to the
charge density can be represented by a short multipole expansion about Ppq. In
the DMA method as originally proposed, this is in turn represented by a multipole
expansion about the nearest site (which need not be at either rp or rq).

This original DMA method is very sensitive to basis set, especially with the large
basis sets containing diffuse functions that are now in common use. The problem
may be illustrated by the case of CO2. A diffuse pz function on the C atom may
be very similar to the difference s1 � s2 between diffuse s functions on oxygen atoms
1 and 2. Depending on the basis set in use, one or other description may be variationally
preferred. However the density in the carbon pz function is represented in the DMA
method by a charge and quadrupole at the C atom, while the density in s1 � s2 is
represented by charges on each oxygen atom. The resulting distributed multipole
descriptions look very different. The electrostatic potential around the molecule is the
same, to high accuracy, but there is no obvious convergence of the multipole description
as the basis set is improved.

This problem has been overcome recently by a variation of the method [21], in which
the part of the electron density arising from diffuse functions is integrated explicitly
over the region around each atom. The resulting description converges steadily as the
basis set is improved.

The main alternative approach to distributed multipole analysis is the method
advocated by Popelier [29], in which the molecule is partitioned into atomic basins
using Bader’s method of atoms in molecules [30]. The integral of equation (7) is then
taken over each atom basin in turn. This method is simple in concept, and the partition
into atomic basins is well-defined and soundly based on theoretical principles, but
the atom basins are sometimes awkwardly shaped, with the consequence that the
resulting multipole expansions do not usually converge quite as well as the DMA,
though Popelier has explored methods for improving the convergence [29]. A further
disadvantage is that the partitioning procedure, and the ensuing integration, are
relatively time-consuming.

There is a major limitation to any of these approaches: the electrostatic
potential yielded by the multipole expansion is incorrect at any point within the
charge distribution. The error, known as the penetration error, is particularly serious
in hydrogen bonding, where the proton of the hydrogen bond often penetrates into
the electron cloud of the acceptor atom [31]. In such cases the penetration error may
be many kJmol�1. We return to this issue in section 9.

4. First-order exchange–repulsion

The first-order exchange–repulsion energy, E
ð1Þ
exch, can be calculated very accurately

using the SAPT(DFT) expressions [4, 12] at specified configurations of the interacting
molecules. To obtain an atom–atom description of the exchange–repulsion entails
breaking the molecule–molecule repulsion down into atom–atom terms. In this case
there is no obvious analytical way of partitioning E

ð1Þ
exch, and numerical techniques or
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approximations must be used. The simplest approach conceptually is to fit a suitable
atom–atom potential function to a large dataset of interaction energies, calculated at
a wide variety of distances and orientations of the interacting molecules. However,
any fitting procedure that involves a large number of fitted parameters is liable
to lead to non-physical values of some of the parameters. The simplest accurate
description of atomic repulsions is the Born–Mayer form, which we write as

X
a2A

X
b2B

G exp
�
��abð�abÞ

�
Rab � �abð�abÞ

��
: ð9Þ

Here �abð�abÞ describes the shape of the interaction between atoms a and b as a
function of their relative orientation �ab, while �ab similarly describes the hardness of
the interaction. Often �ab can be treated as constant, while �abð�abÞ can usually be
described by a short spherical-harmonic expansion. G is a constant energy unit; it
can be seen that the repulsion between atoms a and b is equal to G when
Rab ¼ �abð�abÞ, so that �abð�abÞ describes the shape of the molecules at contour level G.

It is well established that for accurate treatments it is not sufficient to treat � as
independent of orientation; indeed in some cases, notably halogens, the assumption
of spherical atoms leads to results that are qualitatively wrong [32, 33].

Unfortunately, equation (9) then contains a large number of strongly-coupled
parameters, even for molecules of quite modest size, and the fitting procedure has a
strong tendency to lead to unphysical values for the parameters. It is necessary to
find some way of separating the exchange–repulsion energy into atom–atom terms
before attempting to fit it to an analytical expression. Fortunately this can be done.
The method uses the density overlap model, which postulates that the exchange–
repulsion energy is nearly proportional to the overlap between the molecular electron
densities:

E
ð1Þ
exch ¼ KS�

�, where S� ¼

Z
�Ae ðrÞ�

B
e ðrÞ d

3r: ð10Þ

The exponent � in this expression is close to 1 – typically in the range 0.96 to 0.99 – and
for the exact density it is believed to be equal to 1 [34].

If indeed � ¼ 1, we can partition the electron density into atomic contributions, so
that �AðreÞ ¼

P
a2A �aðreÞ, and the exchange–repulsion energy then separates into

atom–atom terms:

E
ð1Þ
exch ¼

X
a2A

X
b2B

E
ð1Þ
exch½ab�, ð11Þ

where

E
ð1Þ
exch½ab� ¼ KSab

� ¼ K

Z
�aeðrÞ�

b
eðrÞ d

3r: ð12Þ

Nobeli and Price [35] explored this approach, partitioning the density via a
density-fitting procedure, and found that it was reasonably successful, though there
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were difficulties with diffuse basis sets, and there is scope for refining the partitioning
procedure, perhaps in a similar manner to that used for distributed multipoles. More
generally, we may expect the proportionality constant to vary somewhat for different
atom pairs:

E
ð1Þ
exch½ab� ¼ KabSab

� , ð13Þ

where the constants Kab could be determined by fits to E
ð1Þ
exch calculated using

SAPT(DFT) (but see also the discussion in section 9). Each of these atom–atom
terms can then be fitted to a single Born–Mayer term or other analytical expression
to obtain an analytical expression of the form equation (9), this time with physically
sensible values for the parameters.

5. Induction and dispersion

The induction and dispersion interactions, although physically quite distinct, are both
response energies, and share a common dependence on the frequency-dependent density
susceptibility (FDDS) �ðr, r0;!Þ, which describes the change in electron density at r
resulting from a delta-function perturbation in electrostatic potential at r0, oscillating
at frequency ! [36]. The induction energy of molecule A in an external potential VðrÞ
depends on the static FDDS:

E
ð2Þ
indðAÞ ¼ �

1

2

Z
VðrÞVðr0Þ�Aðr, r0; 0Þd3r d3r0, ð14Þ

while the dispersion energy between molecules A and B involves the FDDS of each
molecule at imaginary frequency [36]:

E
ð2Þ
disp ¼ �

1

2�

Z 1

0

du

Z
d3r1 d

3r01 d
3r2 d

3r02
�Aðr1, r

0
1; iuÞ�Bðr2, r

0
2; iuÞ

jr1 � r2jjr
0
1 � r02j

: ð15Þ

The FDDS calculated using Kohn–Sham linear response theory [37–39] has been
used for some time now to obtain excitation energies of small systems [40] and recently
it has been shown that this FDDS can also be used in accurate calculations of the dis-
persion and induction energies using (14) and (15). In fact, this is the basis of
SAPT(DFT) and DFT–SAPT [5, 8]. Equations (14) and (15) are not evaluated directly
in SAPT(DFT), but density-fitting techniques [41, 42] are used to recast these equations
into a form that is more efficient computationally [9, 18, 43].

5.1. Distributing the polarizabilities

The asymptotic forms of expressions (14) and (15) depend on molecular multipole
moments and static and frequency-dependent polarizabilities [44]. To obtain distributed
form of these expressions we need distributed multipole moments and polarizabilities.
The former have already been discussed above. It is not easy to find distribution
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schemes for the polarizabilities that preserve accuracy, that make physical sense, and
that are computationally cheap enough to be applicable to large molecules. Methods
based on a real-space partitioning of the volumes surrounding each site, using either
integration grids [45] or Bader’s theory of atoms in molecules [46], result in non-local
polarizabilities with large charge-flow terms which are hard to localize. Moreover,
these methods lead to regions of fairly complex shape, which could lead to artifacts
in the higher rank polarizabilities.

There are partitioning schemes based on fitting local polarizability models to the
point-to-point polarizabilities computed on a grid around the molecule [22, 47]. In
the Williams and Stone [22] implementation, compact and accurate local polarizability
models can be constructed using this method, but polarizabilities of atomic sites buried
under surface atoms are often unphysical. Furthermore, damping must be included in
an empirical manner.

Other distribution methods have relied on basis-space partitioning schemes in
which basis functions centred on a site are used to define the distributed polarizabilities
involving that site. Early attempts based on this technique resulted in distributed
polarizabilities that were not only very dependent on the basis set used but also
completely unphysical in magnitude for larger, more complete, basis sets [48].
However, more recent attempts have been more successful. The LoProp method [49]
uses a series of transformations to arrive at a localized orthonormal basis set that is
then used to obtain distributed polarizabilities using the method of finite fields.
LoProp is applicable to relatively large molecules and can use a variety of theory
levels and basis sets, which is a considerable advantage. However, the finite-field
method cannot be used to obtain frequency-dependent polarizabilities, and the
calculation of high rank polarizabilities is difficult, so the the applicability of LoProp
is limited.

More recently, Misquitta and Stone have developed a distribution scheme based on
constrained density-fitting [23] that is applicable to large systems, without any of the
limitations described above. However, rank for rank, the fitting technique of
Williams and Stone results in more accurate polarizability models. As will be described
below, the combination of these two methods yields a technique that is applicable
to large molecules, results in physically acceptable local polarizabilities, and is very
accurate, even when restricted to low rank.

In the Misquitta–Stone distribution scheme, one uses a modified density-fitting
method [23]. The result of a coupled Kohn–Sham calculation of the FDDS is the set
of coefficients in the molecular orbital expansion:

�ðr, r0;!Þ ¼
X
ivi0v0

Civi0v0 ð!Þ’iðrÞ’vðrÞ’i0 ðr
0Þ’v0 ðr

0Þ, ð16Þ

where the ’i and ’v are occupied and virtual molecular orbitals respectively. This
expression can be simplified by expanding the transition densities ’iðrÞ’vðrÞ in terms
of an auxiliary basis set f�g, so that the FDDS becomes

�ðr, r0;!Þ ¼
X
pq

~Cpqð!Þ�pðrÞ�qðr
0Þ: ð17Þ
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Conventional molecular polarizabilities are readily obtained from the FDDS by an
integration involving multipole moment operators. For example, the dipole–dipole
polarizability involves the electric dipole moment operator:

��� ¼

Z
�̂�ðrÞ�̂�ðr

0Þ�ðr, r0; 0Þ d3r d3r0: ð18Þ

Higher-rank polarizabilities (dipole–quadrupole, quadrupole–quadrupole, etc.) can
be obtained by using the appropriate operators. In general, the polarizability
�tuð!Þ describes the response of the multipole moment Qt to a field Vu oscillating at
frequency !:

�QtðtÞ ¼ ��tuð!ÞVu cos!t, ð19Þ

where

�tu ¼

Z
Q̂tðrÞQ̂uðr

0Þ�ðr, r0;!Þ d3r d3r0: ð20Þ

We use the generic suffices t and u to denote multipole moments and electric fields in a
general way. They may take the values 00, 10, 11c, 11s, 20, . . ., to describe the charge,
the three dipole moment components, the five quadrupole moment components, and
so on. In the case of the fields, V00 is the electrostatic potential, V10, V11c and V11s

are the three first derivatives (i.e., the components of the electric field, with a change
of sign), and V20 etc. are the five spherical-tensor components of the second derivatives
(field gradient). For more details of this notation, see [44].

Equations (18) and (20) describe molecular polarizabilities. Note that the
multipole moment operators are implicitly defined with respect to some
molecular origin. The ordinary dipole–dipole polarizability does not depend on the
choice of origin, but the higher-rank polarizabilities do. Note also that there are no
polarizabilities involving the total charge, since the charge on an isolated molecule
cannot change.

We can obtain atom–atom polarizabilities in a similar manner by restricting the
integration over r to some region a of the molecule, and the integration over r0 to a
region a0. The resulting polarizability describes the response at a0 to a perturbation at
a or vice versa:

�aa0

tu ¼

Z
a

d3r

Z
a0
d3r0 Q̂tðr� raÞQ̂uðr

0 � ra0 Þ�ðr, r
0; 0Þ: ð21Þ

The operators in this expression are referred to local origins at each atom, usually
the nuclei. In this description, an external field VtðraÞ at a induces changes in the
moments Qa

u at a, through the local polarizabilities �aa
tu , and these in turn lead to induced

moments at other atoms, which are described by the non-local polarizabilities �aa0 [44].
The external field VtðraÞ therefore induces moments VtðraÞ�

aa0

tu at all the atoms of the
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molecule. The total change �Qa0

u involves a sum over all components of the fields at all
atoms:

�Qa0

u ¼
X
a

X
t

VtðraÞ�
aa0

tu : ð22Þ

It is possible for the charge in any region of the molecule to change in response to a
perturbation, so the description now includes charge-flow polarizabilities. The total
charge still cannot change, and the atom–atom polarizabilities must satisfy sum rules
to ensure that this is so [44, 50]. The induction energy of molecule A now takes the form

EindðAÞ ¼ �
1

2

X
aa0

X
tu

�aa0

tu VtðraÞVuðra0 Þ, ð23Þ

where the sum is taken over sites in molecule A.
In the density-fitted representation, a natural way to restrict the integration to atom a

is to include only the auxiliary basis functions on atom a:

�aa0

tu ¼
X
p2a

X
q2a0

~Cpq

Z
d3r Q̂tðr� raÞ�pðrÞ

Z
d3r0 Q̂uðr

0 � ra0 Þ�qðr
0Þ: ð24Þ

However this simple recipe leads to very unsatisfactory results. When the density-fitting
basis f�g contains diffuse functions, the diffuse functions on one atom may be used to
describe features on another. The problem can be illustrated by the case of H2 (table 1,
taken from [23]). Equation (24) leads to the distributed polarizabilities shown in the
column headed 	 ¼ 0:0. These suggest that a unit potential difference between the
atoms would lead to a flow of 131.56e from one atom to the other. This is clearly
absurd, and although the large charge-flow is balanced by large dipole–charge and
dipole–dipole polarizabilities in such a way as to lead to overall polarizabilities that
are almost correct, the description is of no practical use.

We have overcome this problem by modifying the density-fitting algorithm. In the
standard density-fitting procedure [41], the fitted density ~� is found by minimizing
the integrals

�iv ¼

Z Z �
~�ivðrÞ � �ivðrÞ

� 1

jr� r0j

�
~�ivðr

0Þ � �ivðr
0Þ
�
d3rd3r0, ð25Þ

where �iv ¼ ’i’v is one of the products of occupied and virtual Kohn–Sham orbitals
that appear in equation (16). Formally, an orthogonality constraint should be applied:

div ¼

Z
~�ivðrÞd

3r ¼ 0, ð26Þ

and although this is usually considered to be unnecessary, we have found that it
improves the stability of the fitting procedure. More importantly, we have added a
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further constraint, so that we minimize

�iv ¼ �iv � 	
X
a, b 6¼a

Eab
iv þ 
ðdivÞ

2, ð27Þ

where Eab
iv is the Coulomb interaction between the contributions of the basis functions

of sites a and b to the transition density �iv, and is defined as

Eab
iv ¼

Z Z
~�aivðr1Þ ~�

b
ivðr2Þ

r12
d3r1d

3r2: ð28Þ

This is effective in removing the non-physical behaviour of the distributed
polarizabilities. The parameter 
 should properly be treated as a Lagrange multiplier,
but it is simpler just to assign a large fixed value to it and to treat the last term of
equation (27) as a penalty function. The middle term is also treated as a penalty
function. Because �iv is a transition density its integral over all space is zero, by orbital
orthogonality, and the integral in equation (28) has both positive and negative
contributions. The optimum value of 	, and even its sign, is not obvious a priori, but
we have found empirically that 	 depends only weakly on basis set, and that values
in the region of 0:0005 are suitable.

With this modification, the density-fitted form of the FDDS leads to much more
sensible values, as shown by the column in table 1 headed 	 ¼ 0:0005. However there
are still nonlocal polarizabilities, i.e. �ab

tu with a 6¼ b, and although they are now very

Table 1. Total, distributed, and localized dipole–dipole polarizability components for the H2 molecule. The
hydrogen atoms are placed on the z-axis. All polarizabilities are in atomic units: 4��0a

3
0 for dipole–dipole,

4��0a
2
0 for dipole–charge, 4��0a0 for charge–charge.

Types of FDDS

DF: 
 ¼ 1000:0

Sites t u no-DF 	 ¼ 0:0 	 ¼ 0:0005

Total polarizabilities:
10 10 6.82 6.82 6.82
11c 11c 5.04 5.01 5.01

Distributed polarizabilities:
H1 H1 00 00 131.56 0.018

00 10 �90.43 0.025
10 10 68.10 3.31
11c 11c 7.36 2.70

H1 H2 00 00 �131.56 �0.018
00 10 �90.43 0.025
10 10 59.54 0.01
11c 11c �4.85 �0.20

Localized polarizabilities:
H1 H1 00 00 0.0 0.0

00 10 0.0 0.0
10 10 3.41 3.41
11c 11c 2.50 2.51
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much smaller, they are still inconvenient – equation (23) requires a double sum over
sites.

The non-local polarizabilities can be removed using a method due to Le Sueur and
Stone [45]. The moments induced in atom b by a perturbation at atom a are in effect
described by a multipole expansion about a. The procedure is in practice somewhat
more elaborate in order to ensure that the polarizabilities remain symmetric,
�aa
tu ¼ �aa

ut . In the case of H2, the resulting description is in fact determined by symmetry.
The method has been applied to a number of molecules. Calculations were carried

out using the PBE0 functional [15, 51] with asymptotic corrections [16, 17], as described
in section 2. The Sadlej basis set [52] was used; although relatively small, it is tuned for
polarizabilities, and yields total and distributed polarizabilities that are almost the same
as those obtained with the much larger Dunning aug-cc-pVTZ basis, at a much lower
computational cost. Results for CO2, formamide and N-methyl propanamide were
reported in [23]. The results are illustrated here for N-methyl propanamide by mapping
the induction energy due to a point charge on a surface at twice the van der Waals
radius away from the atoms (the vdW�2 surface). For computational convenience
the surface was constructed as follows. If the required distance from atom a is R0

a

(twice the van der Waals radius in this case) then the surface is defined by
Ra � R0

a ¼ 0, or equivalently exp
�
��ðRa � R0

aÞ
�
¼ 1, where � is an arbitrary constant.

We define the surface for the whole molecule by
P

a exp
�
��ðRa � R0

aÞ
�
¼ 1.

The effect is as if we shrank an elastic membrane onto the union of vdW�2 atomic
surfaces, more or less tightly depending on the value of �; the intersections between
the vdW surfaces of neighbouring atoms are smoothed out. A value of � ¼ 2
has been used for the maps shown here. The maps were generated using the ORIENT

program, version 4.6 [53].
Figure 1 shows the performance of non-local polarizability models by means of

maps of the induction energy (kJmol�1) arising from a unit charge on the vdW�2
surface of N-methyl propanamide, both with the non-expanded SAPT(DFT) expression
and the rank 4 and rank 2 non-local distributed-multipole approximations. In this
and subsequent pictures the heavy-atom backbone of N-methyl propanamide lies
in the plane of the picture, with the O atom centre right and the HNCH3 group at
the top.

Figure 2 shows maps of the differences between each approximate description and
the ‘exact’ SAPT(DFT) values. It is evident that the rank 1 (dipole–dipole) description
is inadequate. The rank 2 description is better, with errors of the order of 2 kJmol�1

for a unit charge, or well under 0:5 kJmol�1 for a more realistic charge of 0:5e or
less, since the induction energy is proportional to the square of the charge.

The performance of the local polarizability descriptions is shown in figure 3.
As expected, the rank 2 local description is worse than the non-local, but surprisingly
the rank 1 local description is somewhat better than the non-local one. Presumably
a cancellation of errors is responsible. Nevertheless the description is still inadequate,
especially in the region of the O atom, where a good account of the polarizability
is needed to account for its behaviour as a hydrogen-bond proton acceptor.

The second method for obtaining a polarizability model [22] starts from a random
grid of points in the region between the vdW�2 and vdW�4 surfaces. Using
coupled Kohn–Sham perturbation theory, we can compute [23] the response �PQ
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−30q2

−15q2

0

(a) (b) (c)

Figure 1. Non-local polarizabilities. Maps of the induction energy (kJmol�1) arising from a charge q on the
vdW� 2 surface of N-methyl propanamide. (a) using the exact coupled Kohn–Sham FDDS, (b) using the
rank 4 non-local distributed-multipole approximation and (c) using the rank 2 non-local
distributed-multipole approximation.

−6q2

6q2

0

(a) (b) (c)

Figure 2. Non-local polarizability errors. Induction energy arising from a charge q on the vdW� 2
surface of N-methyl propanamide. Maps of the difference (kJmol�1) between various non-local
distributed-multipole approximations and the induction energy obtained from the ‘exact’ coupled
Kohn–Sham FDDS, (a) rank 4, (b) rank 2, (c) rank 1.

−6q2

6q2

0

(a) (b)

Figure 3. Local polarizability models. Induction energy arising from a charge q on the vdW� 2 surface
of N-methyl propanamide. Maps of the difference (kJmol�1) between various local distributed-multipole
approximations and the induction energy obtained from the ‘exact’ coupled Kohn–Sham FDDS, (a) rank 2,
(b) rank 1.
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(change in potential) at point P to a point-charge perturbation at Q. For N points we
have 1/2N(Nþ 1) of these responses, and all can be obtained in a single calculation.
Then we can postulate a polarizability model of some sort, as simple or as detailed
as we wish, and fit the parameters in the model to reproduce the responses as closely
as possible in a least-squares sense. If the model comprises polarizabilities �ab

tu , then
the response at P of the model to a point-charge perturbation at Q is

~�PQ ¼
X
ab

X
tu

TPa
0t �

ab
tu T

bQ
u0 , ð29Þ

where TPa
0t describes the interaction between a point charge at P and a multipole Qt

at a. Minimizing the sum of squares

S ¼
X
PQ

ð ~�PQ � �PQÞ
2

ð30Þ

leads to a set of linear equations for the parameters of the model.
This procedure has a number of attractive features. We can obtain a strictly local

model by simply omitting non-local polarizabilities. In the same way, we can avoid
charge-flow polarizabilities by leaving them out of the model. The quality of the fit
will tell us whether these assumptions are adequate. Furthermore, the procedure is
stable and well-conditioned. Unfortunately it does have a disadvantage: the parameters
that emerge are not always physically sensible. That is, the atomic polarizabilities are
not always positive definite. This in principle means that the induction energy could
become positive, which is not physically possible, though it is very unlikely to
happen with a physically reasonable external field.

Nevertheless it is better to avoid such non-physical models, and it can be done by
combining the fitting procedure with the results of the density-fitting method. Instead
of minimizing equation (30), we minimize

S ¼
X
PQ

ð ~�PQ � �PQÞ
2
þ
X
kk0

gkk0 ðpk � p0kÞðpk0 � p0k0 Þ, ð31Þ

where the pk are the parameters of the model, p0k is an ‘anchor’ or reference value for
parameter pk, and gkk0 is a positive definite matrix of coefficients (a diagonal matrix
in the simplest case). The ‘anchor’ values for troublesome atoms can be taken from
the localized density-fitting procedure, and the remaining parameters can be fitted with-
out constraints.

Figure 4 shows that the results are very good. Using local dipole–dipole
polarizabilities only, the maximum error in the induction energies is only
1:8q2 kJmol�1, and with a realistic charge q this will be of the order of 0:5 kJmol�1.
Applying the constraint to prevent the occurrence of non-physical polarizabilities
makes the fit only slightly worse, and does not increase the error in the
induction energies at all. This therefore promises to be a very useful approach to the
determination of local polarizability models for molecules of significant size. This
method has been recently used to calculate distributed polarizabilities up to rank 4
for the 22-atom 3-azabicyclo[3.3.1]nonane-2,4-dione molecule [24].
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5.2. Distributed dispersion

A method for obtaining atom–atom dispersion coefficients for the case of an atom
interacting with a linear molecule has been described by Sanz-Garcia and Wheatley
[54], but we need a method that is applicable to more general geometries. The
method described above for the induction energy can be extended to dispersion,
just by replacing the static polarizabilities with polarizabilities at imaginary fre-
quency. All of the calculations proceed just as easily as in the static case, but
they have to be carried out using time-dependent density-functional theory. The
polarizabilities are obtained at a set of 10 or so imaginary frequencies, chosen as
the abscissae for a Gauss–Legendre quadrature. To obtain the dispersion coeffi-
cients in a useful form, it is necessary to recouple the polarizabilities, so that for
example the dipole–dipole polarizability is described by a scalar �00, proportional
to the mean polarizability �, and a set of five rank-2 polarizabilities �2q describing
any anisotropy. These can then be combined to yield isotropic and anisotropic dis-
persion coefficients [44, 55, 56].

It is particularly important to exclude non-local polarizabilities, and especially
charge-flow polarizabilities, from the dispersion picture. The general form of the
asymptotic second-order dispersion energy is

E
ð2Þ
disp ¼ �

1

2�

X
aba0b0

X
tut0u0

Tab
tu T

a0b0

t0u0

Z 1

0

�aa
0

tt0 ðivÞ�
bb0

uu0 ðivÞdv, ð32Þ

where Tab
tu describes the electrostatic interaction between multipole t on atom a and

multipole u on atom b. The interaction between multipoles of ranks l and l0 has a
distance dependence R�l�l0�1, so a dispersion term involving only charge–charge
polarizabilities (l ¼ l0 ¼ 0 in both T factors) would have distance dependence R�2.
Terms in R�3, R�4 and R�5 would also occur. We know that at long range, the leading
term in the dispersion is proportional to R�6, so all of these lower powers of R�1 must
cancel out, but the numbers are likely to be large and numerical errors would be
a serious problem.

Moreover, with any non-local terms in the description, equation (32) involves a
quadruple sum over sites, which is likely to be impractical in terms of computer time.

However we have seen that a local polarizability description gives good results for
the static polarizability, so we can use it with some confidence for the polarizabilities
at imaginary frequency and the dispersion energy. The details of the procedure
for determining the atom–atom polarizabilities are otherwise the same as in the static
case [23, 24].

The resulting dispersion models have been tested by mapping the dispersion energy
between an N-methyl propanamide molecule and a neon atom in contact with it.
The reference dispersion energy was calculated using the SAPT(DFT) equivalent
of equation (15) on a grid of such points, using the PBE0 functional with asymptotic
corrections and the Sadlej basis set as before, and the various approximations were
evaluated on the same grid. The dispersion energies in this case are relatively small,
since the neon atom is not very polarizable, but a small spherical atom is the most
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convenient type of probe for illustrating the behaviour of the approximations that we
have tried.

Figure 5 shows the ‘exact’ dispersion energy and the multipole approximation using
two models: one in which atom-atom dispersion terms in R�6 and R�8 were included,
and one using only the R�6 terms. The R�7 terms contributed very little. Figure 6 shows
the differences between these two models and the ‘exact’. We see that the R�6 terms
alone give a rather poor description.

The complete atom–atom description of the dispersion interaction, including all
the anisotropic terms on each atom, is very elaborate, involving over 100 indepen-
dent non-zero parameters, and as always with a description using fitted parameters,
we need to enquire whether all the parameters are necessary. Figure 7 shows the
effect of dropping all the anisotropic terms, so that each atom is described by
just one C6 and one C8 coefficient. The errors in such a description are of the
order of 0:1 kJmol�1. Moreover the map in figure 7(c) shows that the worst
errors arising from the neglect of anisotropy are in the region of the N–H hydro-
gen, so the model could be improved by including anisotropic terms there without
the need to include them for every atom.

6. Second-order exchange energies

The first-order exchange-repulsion energy is the dominant part of the exchange
energy, but significant contributions from exchange also arise at second order in
perturbation theory [57]. These are the second-order exchange-induction, E

ð2Þ
exch�ind,

and exchange-dispersion, E
ð2Þ
exch�disp, energies which, as the names suggest, are

the exchange counterparts of the induction and dispersion energies. While E
ð2Þ
exch�disp

is generally quite small, E
ð2Þ
exch�ind is comparable in magnitude to E

ð2Þ
ind and quenches

the induction energy significantly. These energies are computationally inexpensive
when computed using SAPT(DFT) and can probably be included together with E

ð1Þ
exch

when determining the constants in the overlap model for the exchange.
The second-order exchange energies have generally been ignored in calculations on

large molecules. While this can be justified for the relatively small E
ð2Þ
exch�disp energy,

E
ð2Þ
exch�ind is generally too large in magnitude to be neglected. That it has been neglected

in earlier work without resulting in noticeably large errors is intriguing and is due to a
near cancellation of the penetration and truncation errors of the induction models in
common use (see section 9) and the neglected second-order exchange-induction
energy [24]. However, any attempt at more accurate atom–atom potential development
cannot rely on such cancellations, and these exchange components must be included
explicitly.

7. Higher-order contributions to the two-body energy

Terms of third and higher order can make important contributions to the interaction
energy, particularly for polar molecules, in which case these terms are dominated by
higher-order induction and exchange-induction effects [58].
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−0.5

0.0

0.5

kJ mol−1
(a) (b)

Figure 6. Dispersion energy between a neon atom and N-methyl propanamide, with the atom and molecule
in contact as determined by the van der Waals radii. (a) difference between the model including R�6 and R�8

dispersion terms and the ‘exact’, (b) difference between the model including R�6 dispersion terms only and the
‘exact’.

−2.0

−1.0

0

(a) (b) (c)

Figure 5. Dispersion energy (kJmol�1) between a neon atom and N-methyl propanamide, with the atom
and molecule in contact as determined by the van der Waals radii. (a) ‘exact’ CKS results, (b) including R�6

and R�8 dispersion terms, (c) including R�6 dispersion terms only.

−6q2

6q2

0

(a) (b)

Figure 4. Fitted local polarizabilities. Induction energy arising from a charge q on the vdW� 2 surface of
N-methyl propanamide. Maps of the difference (kJmol�1) between local fitted distributed-multipole models
and the induction energy obtained from the ‘exact’ coupled Kohn–Sham FDDS, (a) rank 1, fitted without
constraints, (b) rank 1, fitted with constraints to prevent non-physical polarizabilities.
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The third-order induction and exchange-induction energies [58] cannot at present
be computed with response effects included, that is, using coupled perturbation
theory, but they can be obtained from uncoupled Kohn–Sham or Hartree–Fock the-
ories. There seems to be evidence [58] that using the uncoupled Hartree–Fock forms
of these energies does not account satisfactorily for the higher-order contributions to
the interaction energy. An alternative way to calculate these contributions is to use
the �HF term, defined as the difference between the supermolecular Hartree–Fock
interaction energy calculated in the dimer basis and the sum of certain low-order
SAPT energy terms [57, 59, 60]. �HF is generally supposed to account for the bulk of
higher-order effects for polar systems, but is clumsy to calculate and seems to be
inappropriate for non-polar (dispersion bound) systems [58].

The classical polarization model (see [44] for a description) can describe effects
which in quantum mechanical perturbation theory would correspond to third and
higher order induction terms in the pair interaction energy. Such effects arise when
each molecule is polarized by all the others, the induced moment arising from the
induced moments as well as the static moments on the other molecules:

�Qa
t ¼ �

X
B 6¼A

X
b2B

X
a02A

X
t0u

�aa0

tt0 T
a0b
t0u ðQ

b
u þ�Qb

uÞ: ð33Þ

If the �Qb
u term on the r.h.s. is neglected, the resulting energy corresponds to the

second-order induction energy. If the induced moments are to be included on the
r.h.s., they must be calculated using an iterative procedure, and the resulting energy
is the classical induction energy summed to infinite order. The cumulative effect of
the iterations is minimal for a dimer, but can be substantial for a cluster and in the
condensed phase [24]. Orbital overlap effects, which are neglected in the classical
model, also become increasingly important with increasing order of perturbation
theory.

−2.0
−0.2

−1.0

0

kJ mol−1 kJ mol−1
(a) (b) (c)

0

0.2

Figure 7. [Colour online] Dispersion energy between a neon atom and N-methyl propanamide, with the
atom and molecule in contact as determined by the van der Waals radii, (a) including fully anisotropic R�6

and R�8 atom–atom dispersion terms, (b) including only the isotropic R�6 and R�8 atom–atom dispersion
terms, (c) anisotropic part of the contribution from the R�6 and R�8 atom–atom dispersion terms.
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Therefore, for the present, there seems to be no convenient way to calculate higher-
order contributions to the interaction energy accurately. This is an active field of
research [24, 58].

8. Many-body effects

In the condensed phase of water, the two-body interaction energies have been found
[61–63] to account for only about 70% of the total interaction energy per molecule.
The remaining 30% arises from non-additivity, that is, that part of the
interaction energy that cannot be represented by the sum of pair-wise interactions.
This nonadditivity is responsible for some of the important structural properties
of water, and in particular plays a large role in hydrogen bonding. For example, the
tetrahedral structure of water in the liquid state has been attributed to three-body
effects [64]. The non-additive effects are expected to be important too for polar mole-
cules other than water, and should be included in atom–atom potentials for organic
molecules, which are commonly very polar and often form hydrogen-bonded networks.

The treatment of non-additivity by ab initio perturbation theory is difficult, and
although there is a version of SAPT that includes the three-body non-additivity
(see [57] for a review), the computational demands are so high as to preclude
applications to organic molecules. However, one of the conclusions of accurate
studies on water clusters [61–63] has been that the bulk of the non-additivity for
polar systems can be recovered using the relatively simple classical polarization
model (see [44] for a description). While exchange non-additivity is significant for
small clusters [61, 62], it is less important in relative terms for large clusters and the
condensed phase, because additional coordination shells around any given molecule
increase the dispersion and electrostatic energies but not the short-range contributions
like exchange non-additivity [63].

There are also many-body terms in the dispersion energy. The leading term is the
Axilrod–Teller–Muto triple-dipole dispersion, which for isotropic local distributed
polarizabilities takes the form

UABC
3� ¼

X
a2A

X
b2B

X
c2C

C9
ð1þ 3 cosba cosbb cosbcÞ

R3
abR

3
bcR

3
ac

, ð34Þ

where Rab, etc., are the lengths of the sides and ba, bb andbc are the angles of the triangle
formed by the three atoms, and

C9 ¼
3

�

Z 1

0

�aðiuÞ�bðiuÞ�cðiuÞdu: ð35Þ

A more general expression, allowing for anisotropy and for higher-rank polarizabilities,
can be constructed without difficulty. The triple-dipole term is known to contribute
significantly, and repulsively, to the lattice energies of the inert gases, but its distance
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dependence is R�9, and large molecules have relatively fewer close 3-atom contacts in
condensed phases than small ones, so even this term is likely to contribute very much
in systems involving molecules of any size.

9. Penetration, truncation errors and damping

The asymptotic expansions described for the electrostatic, induction and dispersion
terms cannot be used directly in an atom–atom potential because they are in error in
several ways.

. The multipole expansion of the electrostatic interaction treats the charge
distribution as if it were concentrated at the expansion origin. The true
charge distributions, however, are finite in extent, and the multipole expansion
is in error when these extended charge distributions overlap. This error is called
the ‘penetration error’.

. Similarly, the asymptotic expansions of the induction and dispersion energies
also ignore the finite extent of the charge distribution. The penetration error
here is the difference between the asymptotic expansion and the non-expanded
expression, (14) or (15).

. In addition, ‘exchange-dispersion’ and ‘exchange-induction’ terms arise when
the molecular wavefunctions overlap.

. Moreover the asymptotic expansion is an infinite series and has to be truncated,
usually at quite low order, for practical calculations. This introduces a
‘truncation error’.

9.1. Damping

The true intermolecular interaction remains finite at all distances, except for R�1

divergences arising from nucleus–nucleus repulsion, but the asymptotic series are
expansions in inverse powers of the inter-site distance Rab, so they diverge when the
sites coincide, always to negative energy in the case of induction and dispersion.

For molecular dynamics at ambient or lower temperatures, the short-range
divergence is not usually troublesome, as the kinetic energy is not great enough to
overcome the repulsion and reach the divergent regions. In Monte Carlo simulations,
however, where a trial step is taken without regard to energy, the system can become
trapped in a spurious well. In any case, the incipient divergence in the asymptotic
expansion for the dispersion has significant effects at distances near the equilibrium
separation. This is clearly demonstrated in the formamide . . .water example to be dis-
cussed below. It is customary to deal with this by using term-by-term ‘damping func-
tions’, the R�n term being multiplied by a damping function fn(R) that goes to zero
fast enough as R ! 0 to cancel out the divergence. The exact choice of damping func-
tion remains an outstanding problem, though the Tang–Toennies [65] damping func-
tions, which are incomplete gamma functions, seem to have had the greatest success
in the generation of high-accuracy potentials for small dimers. Truncation of the
asymptotic series however involves the omission of negative terms, so the magnitude
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of the dispersion is underestimated for moderate distances, and the truncated series may
need to be enhanced or ‘anti-damped’ in this region [66].

It is usually assumed, as the notation suggests, that the damping function is
independent of orientation, but this assumption is based more on ignorance of how
it should behave than on any positive evidence, though Sanz-Garcia and Wheatley
found that damping functions in an atom–atom description were more isotropic than
those for the intermolecular dispersion energy as a whole [54].

The divergence of the asymptotic expansion for the electrostatic interaction is not
troublesome at physically accessible intermolecular separations, and damping is
needed only when the potentials are to be used in Monte Carlo simulations.

Induction is troublesome to handle, because the induced moments themselves induce

further changes in the moments of neighbouring molecules. For a complete description,

it is necessary to iterate the induction process, using the polarized moments at each step

to calculate new polarized moments for the next step. The iterative procedure normally

converges quite quickly, but it can diverge if the the polarizabilities are large and the

separation small. If the molecules are not very polar and not very polarizable, it may

be a good enough approximation to calculate the induction energy of each molecule

in the field of the unpolarized moments of the others. This non-iterated induction

energy doesn’t usually seem to need damping, as the non-expanded SAPT(DFT)

induction energy is generally larger in magnitude than the asymptotic approximation

when terms up to rank 2 are used. However, damping is needed for the iterated

induction energy, and can be introduced in the interaction functions Tab
tu , but at present

it is not clear how it should be described.

9.2. Penetration

The multipole expansion of the electrostatic interaction is in error when the
molecular charge distributions overlap, even if the multipole expansion still converges.
The correction is called the penetration energy, and is negative for small to moderate
overlap. In principle the charge density could be separated into atomic contributions,
as described for the exchange–repulsion energy, and the difference between the exact
electrostatic interaction between two such atomic charge densities and its multipole
expansion could then be expanded in a suitable short-range basis. This is not however
a satisfactory approach: the true electrostatic interaction between atoms remains finite,
apart from the nucleus–nucleus repulsion, so the divergence in the multipole expansion
would have to be cancelled by a divergent expansion of the penetration energy.

A more satisfactory treatment would be the use of Wheatley’s Gaussian multipoles
[31, 67]. In this approach, the charge density is represented by a superposition of
Gaussian functions, and the electrostatic interaction can then be represented exactly
in analytical form, with no divergences other than the nucleus–nucleus repulsion
as R ! 0. The disadvantage of this representation is that the expressions for the
electrostatic interaction are rather more complicated than for point multipoles – both
the initial computation of the Gaussian multipoles and their use in simulations are
time-consuming – and they have not been widely adopted, but for some applications
the price might be worth paying.
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The penetration error can be as large as several kJmol�1 at equilibrium geometries,
and cannot be ignored. For the electrostatic energy, it is known to decay roughly
exponentially with increasing separation in the region of small overlap, i.e. as
expð��RabÞ. This behaviour is similar to that of the repulsion, and because both effects
arise from the overlap of electron densities, the exponential coefficient � is similar in
magnitude for both. Consequently a common practice is to take the first-order
energy from intermolecular perturbation theory, which comprises the electrostatic
and exchange–repulsion terms, and subtract the truncated multipole expansion of
the electrostatic energy from it to leave the sum of the exchange repulsion and the
penetration-truncation corrections. This sum is then fitted to an atom–atom description
in the same way as the exchange–repulsion.

9.3. Penetration effects at second order

The asymptotic expansions for the second-order energies, i.e. induction and dispersion,
are also in error when the molecular wavefunctions overlap. The penetration error here
is defined as the difference between the asymptotic expansion and the non-expanded
expression (14) or (15). At moderate distances, it is negative for the dispersion
energy, but may be positive for the induction energy, so while the asymptotic expansion
for the dispersion needs to be damped, the induction expansion may need anti-damping.
The object of the damping or anti-damping procedure is to remove the penetration
error completely, but the empirical methods in current use cannot be expected to
achieve this. Consequently there is a residual penetration error in the damped expansion
that may have either sign, and indeed may be positive in some places and negative in
others. Moreover there will still be a truncation error.

For these reasons the penetration and truncation corrections at second order
are more complicated to model than those at first order. Nevertheless, in model
construction much the same approach is taken: the difference between the damped
truncated multipole expansion and the basis-saturated non-expanded energy is
modelled, together with the second-order exchange-induction and exchange-dispersion
energies, using either a Born–Mayer function (equation (9)), or, possibly, the overlap
model. In practice it has been customary to include these energies with the first order
penetration and exchange energies and to fit them all together.

9.4. Example: Formamide � � �water

In figures 8 and 9, we illustrate the points discussed above by the induction
and dispersion energies calculated for the formamide � � �water complex, in two
geometries, chosen to emphasise the contacts of particular pairs of atoms and minimize
others.

Figure 8 shows the energy difference �E ¼ Easymp
ind � E

ð2Þ
ind between the truncated

asymptotic expansion of the induction energy and the non-expanded energy from
equation (14). For the curves denoted L1, the local polarizabilities used in the expansion
are truncated at rank 1 (dipole–dipole), while for L2 they are truncated at rank 2
(quadrupole–quadrupole). A positive energy difference means that the asymptotic

216 A. J. Stone and A. J. Misquitta

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



model energy is smaller in magnitude (less negative) than the SAPT(DFT) non-
expanded energy. The residual error is quite large, and almost all models seem to
need anti-damping to agree with SAPT(DFT). Damping is, however, needed to keep
the iterated induction energy finite (see section 7). We do not at present know of a
rigorous method for determining the most suitable form of damping; currently we
use Tang–Toennies damping functions fnðbRÞ for each R�n T function in the induction
energy expression, with b ¼ 1:83 [34].

For the dispersion, figure 9 shows expansions truncated at R�6 atom–atom
terms, denoted C6, and at R�8 terms, denoted C678. In both cases the full
anisotropic dispersion is shown, and also the result of including only the isotropic
atom–atom terms. The damped expansion uses Tang–Toennies damping functions
fnðbRÞ, as above.
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Figure 9. The errors in the asymptotic expansion of dispersion for the formamide � � � water dimer in the
same geometries as in figure 8. The quantities plotted are the energy differences between each of a number of
asymptotic models and the SAPT(DFT) energy.
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Figure 8. [Colour online] The errors in the asymptotic expansion of induction for the formamide � � � water
dimer in two geometries. In (a) the C and O of formamide and one H and the O from water are collinear, with
the second hydrogen in water in the plane perpendicular to the formamide molecule. In (b) the C of for-
mamide and the O of water are in close proximity, with these two atoms and one H of water collinear and the
second O–H bond of water in the direction of the C–O bond of formamide. The quantities plotted are the
energy differences between each of a number of asymptotic models and the SAPT(DFT) energy. Note that in
(b), the damped and undamped L2 models are not visibly distinguishable.
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In geometry ðaÞ, all asymptotic models need to be anti-damped at intermediate dis-
tances (because of the truncation error) but damped at small distances. The
anti-damping needed is less for the C678 models, but is rather large for the simpler C6

models, for which the SAPT(DFT) dispersion energy is underestimated by
about 1 kJmol�1 at the minimum. In geometry ðbÞ, the same holds for the C6

models, but now the C678 models overestimate the dispersion and need to be damped
at all distances.

Using the same damping coefficient for both geometries, as here, leads to
errors of opposite signs. This could complicate models in which the remaining error
(often erroneously assumed to be the penetration error) is assumed to be positive.

The fitting procedure described above (equation (30) or (31)) provides a way to
explore the use of damping functions, since the interaction functions Tab

tu that appear
in (29) may include a damping function. If this is done, the fitted polarizabilities and
dispersion coefficients that result are the values that are most suitable for use with
those damped interaction functions. It would be necessary to choose the points to be
used in the fitting procedure closer to the molecule than 2–4 times the van der Waals
radius, in order to sample the region where the damping functions become effective.

10. Other considerations

10.1. Basis sets

The basis set requirements for accurate calculations of molecular properties and
intermolecular interaction energies tend to be quite stringent. Firstly, intermolecular
energies are strongly dependent on the asymptotic regions of the molecular wave
functions, and diffuse basis functions are required to describe these parts of the wave
function accurately. Modern augmented basis sets of triple-zeta quality generally satisfy
this requirement.

Secondly, the dispersion energy is very slowly convergent with respect to the rank of
the angular functions included in the basis [68]. This is probably because the penetration
contribution of the intermolecular correlation responsible for the dispersion arises from
the region between the interacting molecules, and is consequently hard to describe with
basis functions centred on the atomic sites. It has been observed that adding a small
set of basis functions in the bonding region (the so-called ‘mid-bond’ functions)
improves the convergence of the dispersion significantly [68]. The effect of these
mid-bond functions is not at all small; they can account for as much as 20% of the
dispersion energy at the equilibrium distance, and more at shorter separations. If
the basis set used for the calculations reported in figure 9 was augmented with such
mid-bond functions, the anti-damping needed for the dispersion would be even greater.
This point is generally missed in calculations on large molecules but needs to be
adequately addressed.

Further complications are introduced by the extreme sensitivity of both second-order
induction and exchange-induction energies to the presence of basis functions located on
the atomic sites of the interacting partner. These basis functions, sometimes referred
to as ‘far-bond’ functions [68], lead to short-range induction and exchange-induction
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energies that can be orders of magnitude larger than their counterparts calculated in
monomer basis sets. One consequence of this sensitivity is that the basis-saturated
induction energy is generally much larger in magnitude than the asymptotic expansion
would suggest, so that the asymptotic expansions need to be enhanced rather than
damped even more than has been shown in figure 8. There is some debate as to whether
this unusual behaviour is a charge transfer effect [69] or a manifestation of the
divergence of the induction series due to the Coulomb singularities in the intermolecular
operator [70, 71]. The development of a regularized symmetry-adapted perturbation
theory, that is, a perturbation theory without the Coulomb singularities, is an active
field of research [71]. While there is an indication that the pathological terms in the
induction can be removed by regularization, there still remain important issues
that need to resolved. Furthermore, a regularized version of SAPT(DFT) is yet to be
developed. For the present, we believe that the induction energy should be calculated
either using a monomer basis augmented with the ‘far-bond’ functions or in the
dimer basis set [24].

10.2. Molecular geometry

Computational limitations usually demand that ab initio intermolecular potentials
are constructed with the molecules kept rigid, generally at the gas phase equilibrium
geometry. A better choice has been shown [72] to be the vibrationally averaged
molecular geometry, but that is often hard to obtain, as the accurate spectroscopic
data needed are not often available. While vibrationally-averaged geometries have
been used with good success for small molecules in the gas phase (see [57] for a
review), this too may be completely inadequate in the condensed phase where molecules
undergo considerable distortion.

For the case of molecular crystals, the molecular distortion in the condensed phase
is generally unique and can, at least in principle, be determined by theoretical or
experimental methods. Knowledge of the condensed phase and gas phase molecular
geometries can then be used to construct the PES using equation (2) – that is, by
calculating the surface for the distorted geometries, V�

ABC..., and adding on the energy
penalties for molecular distortion.

However, the condensed phase geometry may not be unique (as is the case for liquids)
or even if unique, may be impossible to predict a priori (see [73] for a review). In such
cases, the PES involving intermolecular and intramolecular degrees of freedom must be
considered. This is a formidable task, and the naive construction of such a surface for
even the smallest organic molecule is almost impossible. One possible way to construct
such a PES is to include the intramolecular degrees of freedom via a truncated Taylor
expansion [74]. This method is computationally efficient and has been demonstrated
to result in potentials of spectroscopic accuracy, but as yet it has been applied to
small systems only. Another possibility is to use the so-called atom-following approach,
i.e., to allow the sites in a site–site potential to move and carry the unchanged site
properties with them. This method has the advantage of involving no additional
computational expense, but while it is capable of predicting the trends correctly, it is
inadequate for the generation of accurate potential energy surfaces [75].
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The atom-following approach is based on two assumptions: (1) that the site
properties are in some sense physical as opposed to being just mathematical entities,
and (2) they don’t change very much with molecular distortion. The latter issue has
been addressed [75] by introducing an explicit molecular geometry dependence in the
asymptotic coefficients for the dispersion and induction energies. This has been
found to work better than the naive atom-following approach. Further improvements
are probably possible if the site properties are obtained in a physical manner, perhaps
using the distribution techniques described above.

Finally, there are cases where the changes in molecular structure in the condensed
phase is so large as to cast doubt on the possibility of using perturbation theory at
all. Zwitterionic systems like glycine fall into this category. The rigorous treatment of
such systems remains an open question.

11. Conclusions

The field of intermolecular interactions has seen significant developments in the last few
years. The size of system that can be studied has increased to the point where molecules
of biological interest can be studied to good accuracy. Theoretical methods like
SAPT(DFT) now allow us to calculate accurate interaction energies between pairs
of benzene molecules, or other molecules of similar size, on a routine basis. Even
molecules such as 3-azabicyclo[3.3.1]nonane-2,4-dione dimer [24] (22 atoms per
molecule) can be handled, though this remains a time-consuming calculation. New
distribution schemes for both multipole moments and frequency-dependent polarizabil-
ities provide us with the necessary tools for the development of atom–atom potentials.
However, these modern accurate ab initio calculations of intermolecular interaction
energies by perturbation theory have also raised new questions to which satisfactory
answers are not yet available. These questions concern the accurate calculation of the
interaction energy at short range, where overlap effects are important. This review
has attempted to describe all of these topics in some detail, and to show how a new
generation of atom–atom potentials can be developed for use in simulations, using
the separation of the interaction energy into physically meaningful components that
perturbation theory can provide.

For systems of a few atoms, ab initio electronic structure theory has already achieved
an accuracy high enough to be comparable to the accuracy of experiments. We hope
that we will soon be in a position to provide a similar accuracy and predictive power
for systems comprising small organic molecules.

12. Programs

Many of the theoretical methods described in this review are implemented in programs
available for download. Some of these, together with their main uses in the present
work, are:

. SAPT2002 [76]: SAPT(KS) energy calculations.

. SITUS 4.5 [77]: Molecular properties in total and distributed form and
SAPT(DFT) dispersion and induction energies.
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. ORIENT 4.6 [53]: Localization of the distributed polarizabilities and visualization
of the energy maps.

. DALTON 2.0 [78]: DFT and CKS calculations. A patch [76] is needed to enable
DALTON 2.0 to work with SAPT2002 and SITUS 4.5.
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